2022 Essex Summer School 3K: Dynamics and Heterogeneity

Robert W. Walker, Ph. D. Associate Professor of Quantitative Methods Atkinson Graduate School of Management Willamette University Salem, Oregon USA rwalker@willamette.edu

August 15, 2022

2022 Essex SS²DA: Dynamics and Heterogeneity

Outline for Day 6

- With models, we need a model for comparison.
- Some Useful Notation
- Fixed and Random Effects
- Comparing FE and RE with Hausman
- The Multilevel generalization

The Dimensions of TSCS/CSTS and Summary

- Presence of a time dimensions gives us a natural ordering.
- Space is not irrelevant under the same circumstances as time nominal indices are irrelevant on some level. Defining space is hard. Ex. targeting of Foreign Direct Investment and defining proximity.
- ANOVA is informative in this two-dimensional setting.
- A part of any good data analysis is summary and characterization. The same is true here; let's look at some examples of summary in panel data settings.

Basic xt commands

In Stata's language, xt is the way that one naturally refers to CSTS/TSCS data. Consider NT observations on some random variable y_{it} where $i \in N$ and $t \in T$. The TSCS/CSTS commands almost always have this prefix.

- xtset: Declaring xt data
- xtdes: Describing xt data structure
- xtsum: Summarizing xt data
- xttab: Summarizing categorical xt data.
- xttrans: Transition matrix for xt data.

• xtline: Line graphs for xt data.

A Primitive Question

Given two-dimensional data, how should we break it down? The most common method is unit-averages; we break each unit's time series on each element into deviations from their own mean. This is called the within transform. The between portion represents deviations between the unit's mean and the overall mean. Stationarity considerations are generically implicit.

Some Useful Variances and Notation

• W(ithin) for unit i^1 :

$$W_i = \sum_{t=1}^T (x_{it} - \overline{x}_i)^2$$

• B(etween):

$$B_T = \sum_{i=1}^N (\overline{x}_i - \overline{x})^2$$

• T(otal): $T = \sum_{i=1}^{N} \sum_{t=1}^{T} (x_{it} - \overline{x})^2$

¹Thus the total within variance would be a summary over all $i \in N$

Some Useful Notation

 The Kronecker Product ⊗: This is a simple way of condensing the notation for sets of matrices. It is important to note that conformity is not required. So, for a general matrix A_{kl} and B_{mn}, we can write

$$A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B & a_{13}B \\ a_{21}B & a_{22}B & a_{23}B \\ a_{31}B & a_{32}B & a_{33}B \end{pmatrix}$$

with a result C of dimension (km)(ln).

The inverse of a Kronecker product is well defined [under invertibility conditions]

$$[A \otimes B]^{-1} = [A^{-1} \otimes B^{-1}]$$

2022 Essex SS²DA: Dynamics and Heterogeneity

• As are products of Kronecker products

 $(A \otimes B)(C \otimes D) = AC \otimes BD$

Why is the Notation Useful?

Let A be a variance/covariance matrix across panels and B be the same matrix for a given panel. This is a fairly general way to conceive of a panel data problem.

Heteroscedasticity?

Temporal Autocorrelation?

Spatial Autocorrelation?

Heteroscedasticity

The homoscedastic case is described by $\sigma^2 I$.

The [unit] heteroscedastic case is described, generally, by $\sigma_i^2 I_N \otimes I_t$

$$\left(\begin{array}{cccc} \sigma_1^2 I_T & 0 & 0 & 0 \\ 0 & \sigma_2^2 I_T & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & \sigma_N^2 I_T \end{array}\right)$$

The ultimate result will be of dimension $NT \times NT$. The first T entries will be σ_1^2 , entries T + 1 to 2T will be $\sigma_2^2 \dots$ and the entries (N - 1)T + 1 to NT will be σ_N^2 . If we believed that the heteroscedasticity arose from time points rather than units, replace N with T and vice versa; i becomes t.

2022 Essex SS²DA: Dynamics and Heterogeneity

The Managable Autocorrelation Structure

$$\Phi = \sigma^{2} \Psi = \sigma_{e}^{2} \begin{pmatrix} 1 & \rho_{1} & \rho_{2} & \dots & \rho_{T-1} \\ \rho_{1} & 1 & \rho_{1} & \dots & \rho_{T-2} \\ \rho_{2} & \rho_{1} & 1 & \dots & \rho_{T-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \rho_{T-1} & \rho_{T-2} & \rho_{T-3} & \dots & 1 \end{pmatrix}$$

given that $e_t = \rho e_{t-1} + \nu_t$. A Toeplitz form....

This allows us to calculate the variance of e using results from basic statistics, i.e. $Var(e_t) = \rho^2 Var(e_{t-1}) + Var(\nu)$. If the variance is stationary, we can rewrite,

$$\sigma_e^2 = \frac{\sigma_v^2}{1 - \rho^2}$$

2022 Essex SS²DA: Dynamics and Heterogeneity

Autocorrelation

When discussing heteroscedasticity, we notice that the off-diagonal elements are all zeroes. This is the assumption of no correlation among [somehow] adjacent elements. The somehow takes two forms: (1) spatial and (2) temporal. Just as before where time-induced heteroscedasticity simply involved interchanging N and T and i and t; the same idea prevails here.

Aitken's Theorem?

In a now-classic paper, Aitken generalized the Gauss-Markov theorem to the class of Generalized Least Squares estimators. It is important to note that these are GLS and not FGLS estimators. What is the difference? The two GLS estimators considered by Stimson are not strictly speaking GLS.

Definition:

$$\hat{\beta}_{GLS} = (\mathbf{X}' \Omega^{-1} \mathbf{X})^{-1} \mathbf{X}' \Omega^{-1} \mathbf{y}$$
(1)

Properties: (1) GLS is unbiased. (2) Consistent. (3) Asymptotically normal. (4) MV(L)UE

What does the feasible do?

We need to estimate things to replace unknown covariance structures and coverage will depend on properties of the estimators of these covariances. Consistent estimators will work but there is euphemistically "considerable variation" in the class of consistent estimators. Contrasting the Beck and Katz/White approach with the GLS approach is a valid difference in philosophies.²

 $^{^{2}}$ We will return to this when we look at Hausman because this is the essential issue.

The Beck and Katz solution

Beck and Katz take a different tack to the general data types in common use (long T). The basic idea is to generate estimates using OLS because GLS can be quite bad. [What do we need to be able to do this?]

- Locate a specification to purge serial correlation (in t).
- p. 638 Construct the panel corrected standard error. Construct $\Sigma~(N\times N)$ using

$$\hat{\Sigma} = \frac{\sum_{t=1}^{T} e_{it} e_{jt}}{T}.$$

Estimate the cross-sectional correlation matrix. Kronecker product this in I_T remembering how we got I.

• Inference with OLS and PCSE in the spirit of White, really Huber (1967) but

the key is separable moments. Brief diversion here about separability; it turns out the result yesterday is what gives rise to the appropriate intuition.

Thinking about robust and cluster

Every Stata user is familiar with this, it seems. Though not developed by Stata (but Hardin, a student of Huber), the two are synonymous. What would these look like in an application?

- just robust is unstructured heteroscedastic
- cluster utilizes the multidimensional axes

xtgls and xtpcse

Two significant options of note

- panels(iid, heteroscedastic, correlated)
- correlation(ar1,psar1,independent)

panels

• iid

$$\epsilon\epsilon' = \sigma^2 \mathbf{I}_{N \times N}$$

gives us homscedasticity and no spatial correlation; σ^2 is scalar.

• heteroscedastic

$$\epsilon \epsilon' = \sigma_i^2 \mathbf{I}_{N \times N}$$

gives us heteroscedasticity and no spatial correlation; σ_i^2 is an N-vector.

• correlated

$$\epsilon \epsilon' = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \sigma_{13} & \dots & \sigma_{1N} \\ \sigma_{21} & \sigma_2^2 & \sigma_{23} & \dots & \sigma_{2N} \\ \sigma_{31} & \sigma_{32} & \sigma_3^2 & \dots & \sigma_{3N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \sigma_{N1} & \sigma_{N2} & \sigma_{N3} & \dots & \sigma_N^2 \end{pmatrix}$$

2022 Essex SS^2DA : Dynamics and Heterogeneity

gives us heteroscedastic and (contemporaneously) spatially correlated errors

correlation

• independent

$$\epsilon\epsilon' = \mathbf{I}_{T \times T}$$

gives us no autoregression.

• ar1

$$\epsilon \epsilon' = \begin{pmatrix} 1 & \rho & \rho^2 & \dots & \rho^{T-1} \\ \rho & 1 & \rho & \dots & \rho^{T-2} \\ \rho^2 & \rho & 1 & \dots & \rho^{T-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \rho^{T-1} & \rho^{T-2} & \rho^{T-3} & \dots & 1 \end{pmatrix}$$

gives us a global autoregressive parameter for the errors. In simple terms, all cross-sections share the same "level" of serial correlation.

• psar1

$$\epsilon \epsilon' = \begin{pmatrix} 1 & \rho_i & \rho_i^2 & \dots & \rho_i^{T-1} \\ \rho_i & 1 & \rho_i & \dots & \rho_i^{T-2} \\ \rho_i^2 & \rho_i & 1 & \dots & \rho_i^{T-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \rho_i^{T-1} & \rho_i^{T-2} & \rho_i^{T-3} & \dots & 1 \end{pmatrix}$$

gives us an autoregressive parameter for the errors that is unique to each cross-section. Each cross-section has a distinct "level" of serial correlation.

Unit Heterogeneity

Most discussions of panel data estimators draw on a fixed versus random effects distinction. The subtle distinction is important but perhaps overstated.

Definitions

Let's construct a general model:

$$y_{it} = \alpha_{it} + \mathbf{X}_{it}\beta_{it} + \epsilon_{it}$$

- 1. Pooled Model: $y_{it} = \alpha + X_{it}\beta + \epsilon_{it}$
- 2. Year Dummies Model: $y_{it} = \alpha_t + X_{it}\beta + \epsilon_{it}$
- 3. (Two-way) LSDV: $y_{it} = \alpha_i + \alpha_t + X_{it}\beta + \epsilon_{it}$
- 4. Unit Dummies Model: $y_{it} = \alpha_i + X_{it}\beta + \epsilon_{it}$
 - (a) Fixed effects: $y_{it} \bar{y}_i = \Delta_i X_{it} \beta + \Delta_i \epsilon_{it}$ (b) Random effects $\alpha_i \perp X_{it}$: $\alpha_i \sim [\alpha, \sigma_{\alpha}^2] \ \epsilon_{it} \sim [0, \sigma_{\epsilon}^2]$

Why does heterogeneity matter?

- If $\alpha \neq \alpha_i \forall i$, then serial correlation is induced in the errors. At a minimum, this implies incorrect standard errors for inference and inefficiency.
- If $\mathbb{E}[X_{it}\alpha_i] \neq 0$, then $(\alpha_i \alpha)$ is an omitted variable with a consequent bias induced. We can draw a picture of this.

A brief simulation.

Some ANCOVA

- Pooled Slope and Intercepts
- Pooled Intercepts
- Pooled Slopes

Constructing Estimators

• Pooled Estimator

$$\hat{\beta}_T = T_{xx}^{-1} T_{xy} = (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}' \mathbf{y}$$

• Within Estimator

$$\hat{\beta}_W = W_{xx}^{-1} W_{xy}$$

• Between Estimator

$$\hat{\beta}_B = B_{\overline{xx}}^{-1} B_{\overline{xy}}$$

A Variation Identity

- $T = W_{xx} + W_{\overline{xx}}$
- In different notation, T = W + B or $S^t = S^w + S^b$.

$$\sum_{i=1}^{N} \sum_{t=1}^{T} (x_{it} - \overline{x})^{2} = \sum_{i=1}^{N} \sum_{t=1}^{T} x_{it}^{2} - NT\overline{x}^{2}$$
(2)
$$= \sum_{i=1}^{N} \sum_{t=1}^{T} x_{it}^{2} - T_{i}\overline{x}_{i} + T_{i}\overline{x}_{i} - NT\overline{x}^{2}$$
(3)
$$= \sum_{i=1}^{N} \sum_{t=1}^{T} (x_{it} - \overline{x}_{i})^{2} + \sum_{i=1}^{N} T_{i}(\overline{x}_{i} - \overline{x})^{2}$$
(4)

Back to ANCOVA

- 1. RSS from W_i with DF = NT NK N
- 2. RSS from W with DF = NT N K
- 3. RSS from T with DF = NT K 1

For total pooling, we can F-test $\frac{3-1}{1}$. This is the least and most restricted sets of models. If we can reject this, pooling is (perhaps) justified? Now let's construct some others. Suppose we reject total pooling. Is it intercepts, slopes, or both? Imposing a slope restriction gives us 2, the F we want is $\frac{2-1}{1}$. What do we get from $\frac{3-2}{2}$? NB: It's conditional. We can also do this with time. This is a good starting point, but it is not as clean as we might like.

OLS as Weighted Average

Walk through proof here.

$$\hat{\beta}_{OLS} = [S_{xx}^t]^{-1} S_{xy}^t$$
(5)

$$= [S_{xx}^{w} + S_{xx}^{b}]^{-1}(S_{xy}^{w} + S_{xy}^{b})$$
(6)

$$= [S_{xx}^{w} + S_{xx}^{b}]^{-1}S_{xy}^{w} + [S_{xx}^{w} + S_{xx}^{b}]^{-1}S_{xy}^{b}$$
(7)

Let $F^w = [S^w_{xx} + S^b_{xx}]^{-1}S^w_{xx} \to F^b = I - F^w = [S^w_{xx} + S^b_{xx}]^{-1}S^b_{xx}$. My claim is that $\hat{\beta}_{OLS} = F^w \beta^w + F^b \beta^b$.

$$= [S_{xx}^{w} + S_{xx}^{b}]^{-1} \underbrace{S_{xx}^{w}[S_{xx}^{w}]^{-1}}_{I} S_{xy}^{w} + [S_{xx}^{w} + S_{xx}^{b}]^{-1} \underbrace{S_{xx}^{b}[S_{xx}^{b}]^{-1}}_{I} S_{xy}^{b}$$
$$= [S_{xx}^{w} + S_{xx}^{b}]^{-1} S_{xy}^{w} + [S_{xx}^{w} + S_{xx}^{b}]^{-1} S_{xy}^{b}$$

2022 Essex SS²DA: Dynamics and Heterogeneity

A Random Effects Estimator

- Assume that the unit means have some distribution rather than being some fixed constant.
- This allows (under normality) us to partition the global error into components.
- The method is the same, the difference is the weighting by a covariance matrix with a known structure.
- As we noted, there is a simple problem with the application of the OLS estimator if the error is correlated with the regressors.
- How might we think about remedying this?

Comparing Fixed and Random Effects

- The Hausman test: smart and broadly applicable idea. Wish it worked better... See V. E. Troeger.
- Mundlak's argument merits consideration.

Hausman's Idea

The basic idea is that the fixed effects estimator is consistent but potentially inefficient. The random effects estimator is only consistent under the null. We can leverage this to form a test in the Hausman family using the result proved in the paper. This is implemented in Stata using model storage capabilities.

- Estimate a consistent model
- Store the result as XXX.
- Estimate an efficient model
- Store the result as YYY.
- hausman XXX YYY

Mundlak

The basic idea behind Mundlak's paper is that the fixed versus random effects debate is ill conceived. Moreover, there is a "right model". Why and how?

- Conditional versus unconditional inference.
- FE problem is inefficiency.
- RE problem can be bias.
- Maybe we want an MSE criterion?
- As usual, N and T matter in size. Plug-in estimators in general.

Bell, Fairbrother, and Jones

Estimate a variant of the Mundlak model that accommodates all the concerns.

$$y_{it} = \beta_0 + \beta_{1W}(x_{it} - \overline{x}_i) + \beta_{2B}\overline{x}_i + \beta_3 z_i + (\nu_i + \epsilon_{it})$$

First-Differences

Define Δ to be a difference operator so that we can define

$$\Delta \mathbf{X} = \mathbf{X}_{it} - \mathbf{X}_{i,t-1} \tag{8}$$

$$\Delta \mathbf{y} = \mathbf{y}_{it} - \mathbf{y}_{i,t-1} \tag{9}$$

Observation: N(T-1) observations if $T_i \ge 2 \quad \forall i$. Equality case is interesting. The first-difference estimator is then:

$$\Delta \mathbf{y} = \boldsymbol{\beta}(\Delta \mathbf{X}) + \boldsymbol{\epsilon}_{it}$$

And an OLS estimator would simply look like:

$$\hat{\beta} = (\Delta \mathbf{X}' \Delta \mathbf{X})^{-1} \Delta \mathbf{X}' \Delta \mathbf{y}$$
(10)

NB: For T = 2 show that FE is FD.

2022 Essex SS²DA: Dynamics and Heterogeneity

First Differences/Fixed Effects

Either transformation removes heterogeneity. The difference is that the two estimators operate at different orders of integration. The difference is not purely convenience; there is substance to this and theory can help. At the same time, the statistics matter.

Specification Testing and Interpretation in the Fixed Effects Model

- F-test of the dummy variables. What does this mean?
- Above can be done in one- and two- way frameworks.
- The substance depends on the first-order question. Under what conditions are first-order effects unbiased (we know this)? The RE/GLS approach works when the orthogonality is maintained.
- Example from Arellano, p. 40

Conditional versus unconditional prediction?

Stata Implementation

• xtreg: contains five estimators. For now, we will skip (pa).

be: the between effects estimator.

$$\overline{y}_i = \overline{x}_i + \epsilon_i$$

fe: the fixed effects or within estimator.

$$y^{C_i} = \mathbf{X}^{C_i} + \epsilon_{it}$$

re: the standard GLS random effects estimator. mle: the maximum likelihood random effects estimator.

Random Effects in Estimation

- The between estimator ignores all within variation ($\psi = 0$).
- OLS is a weighted average of between and within ($\psi = 1$).
- GLS is an optimally determined compromise given the orthogonality assumption ($0 \ge \psi \ge 1$).

That weight is not in any sense optimally determined, it is a function of the relative ratio of the two quantities (all variance counts the same). As Hsiao (p. 37) points out that the random effects estimator is often known as a quasi-demeaning estimator. This is because it is a partial within transformation.

Details on Random Effects GLS (FGLS)

We will start with the model we defined as random effects before. We defined random effects $\alpha_i \perp X_{it}$: $\alpha_i \sim [\alpha, \sigma_{\alpha}^2] \quad \epsilon_{it} \sim [0, \sigma_{\epsilon}^2]$. Consider $\nu_{it} = \alpha_i + \epsilon_{it}$. For a single cross-section (remembering the Kronecker product will help us here)

$$\mathbb{E}(\nu_{it}\nu_{it}') = \sigma_{\epsilon}^{2}\mathbf{I}_{\mathbf{T}} + \sigma_{\alpha}^{2}\mathbf{1}_{T} = \mathbf{\Omega}$$

The inverse is given by

$$\Omega^{-1} = \frac{1}{\sigma_{\epsilon}^2} \left[\mathbf{I}_{\mathbf{T}} - \frac{\sigma_{\alpha}^2}{\sigma_{\epsilon}^2 + T \sigma_{\alpha}^2} \mathbf{1}_T \right]$$

We can also estimate this by using ordinary least squares applied to transformed data. The quasi-demeaning can be done in a first-stage with OLS estimates on the quasi-demeaned data. Recall the pooled regression uses no transformation. The within estimator uses complete demeaning. The random effects estimator is somewhere in between.

Random Effects Variance

Breusch and Pagan (modified by Baltagi and Li) have developed a Lagrange multiplier test of whether or not the random effects have a variance. The test statistic is defined as:

$$LM = \frac{NT}{2(T-1)} \left[\frac{\sum_{N} \left(\sum_{T} \epsilon_{it}\right)^{2}}{\sum_{N} \sum_{T} \epsilon_{it}^{2}} - 1 \right] \sim \chi_{1}^{2}$$

. xtreg growth	lagg opengdp	o openex oper	nimp left	c centra	al inter, re	
Random-effects	GLS regressi	lon		Number	of obs =	240
Group variable	(i): country	7		Number	of groups =	16
growth	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
lagg1	. 151848	.0865508	1.75	0.079	0177884	.3214843
opengdp	.0082889	.0010012	8.28	0.000	.0063267	.0102511
openex	.0019834	.0005903	3.36	0.001	.0008263	.0031404
openimp	0047988	.0010474	-4.58	0.000	0068518	0027459
leftc	0268801	.0108211	-2.48	0.013	048089	0056711
central	7428119	.2547157	-2.92	0.004	-1.242045	2435784

2022 Essex SS²DA: Dynamics and Heterogeneity

inter	3.607517	.0041671	3.33	0.001	.0057261	.0220609
_cons		.571187	6.32	0.000	2.488011	4.727023
sigma_u sigma_e	.36517121 2.0094449	(fraction o	of variar	nce due t	o u_i)	

R-squareds

. xtreg growth lagg1 opengdp, fe

Fixed-effects	(within) reg	ression		Number	of obs	= 240
Group variable	(i): countr	У		Number	of groups	= 16
R-sq: within	= 0.2562			Obs per	group: min	= 15
-	= 0.0031			F		= 15.0
	= 0.1563				0	= 15
0,01011	0.1000				mair	10
				F(2,222)	= 38.23
corr(u_i, Xb)	= -0.3888			Prob >	F	= 0.0000
	Coof	C+d Error	+	P>ItI	[95% Conf	Tn+onroll
Ŭ						. Intervalj
+						
+ lagg1	.2647972	.0851979	3.11	0.002	.0968971	.4326972
+ lagg1 opengdp	. 2647972 . 0094949	.0851979 .0011229	3.11 8.46	0.002	.0968971 .007282	.4326972 .0117078
lagg1 opengdp _cons	.2647972 .0094949 .5289261	.0851979	3.11 8.46 1.42	0.002 0.000 0.156	.0968971 .007282 2039929	.4326972 .0117078 1.261845
lagg1 opengdp _cons	.2647972 .0094949 .5289261	.0851979 .0011229 .3719065	3.11 8.46 1.42	0.002 0.000 0.156	.0968971 .007282 2039929	.4326972 .0117078 1.261845
<pre>lagg1 opengdp _cons sigma_u </pre>	.2647972 .0094949 .5289261	.0851979 .0011229 .3719065	3.11 8.46 1.42	0.002 0.000 0.156	.0968971 .007282 2039929	.4326972 .0117078 1.261845
<pre>lagg1 opengdp _cons sigma_u sigma_e </pre>	.2647972 .0094949 .5289261 1.142546 2.0889953	.0851979 .0011229 .3719065	3.11 8.46 1.42	0.002 0.000 0.156	.0968971 .007282 2039929	.4326972 .0117078 1.261845
<pre>lagg1 opengdp _cons sigma_u sigma_e </pre>	.2647972 .0094949 .5289261 1.142546 2.0889953	.0851979 .0011229 .3719065	3.11 8.46 1.42	0.002 0.000 0.156	.0968971 .007282 2039929	.4326972 .0117078 1.261845

Source	SS	df	MS		Number of obs = $E(-2) = 227$	240
Model Residual + Total	333.650655 968.786108	2 1 237	66.825327 4.0877051		Prob > F = 0.0 R-squared = 0.2 Adj R-squared = 0.2	0.81 0000 2562 2499 0218
Cgrowth			r. t	P> t	[95% Conf. Interv	val]
Clagg1 Copengdp _cons	.2647972	.082457 .001086 .130507	7 3.21 8 8.74	0.002 0.000 1.000	.1023536 .4272 .0073539 .0116 2571021 .257	6359

. reg Cgrowth Clagg1 Copengdp

Betweens

- . by country: egen gmean = mean(growth)
- . by country: egen glmean = mean(lagg1)
- . by country: egen opengdpmean = mean(opengdp)
- . gen yhatb = _b[_cons] + _b[lagg1]*glmean + _b[opengdp]*opengdpmean
- . reg gmean yhatb

Source	SS	df	MS		Number of obs = 240	
Model Residual +- Total	140.975583	1 .4 238 .5	45360906 92334381 		F(1, 238) = 0.75 Prob > F = 0.3868 R-squared = 0.0031 Adj R-squared = -0.0010 Root MSE = .76963	
gmean	Coef.		. t			
yhatb _cons	0570801 3.185291	.0658282 .2044862	-0.87	0.387	1867605 .0726003 2.782457 3.588125	

Total

```
gen yhatT = _b[_cons] + _b[lagg1]*lagg1 + _b[opengdp]*opengdp
```

. fit growth yhatT

Source	SS	df	MS		Number of obs =	= 240
+					F(1, 238) =	= 44.11
Model	225.744206	1 22	5.744206		Prob > F =	= 0.0000
Residual	1218.11349	238 5.	11812392		R-squared =	= 0.1563
+					Adj R-squared =	= 0.1528
Total	1443.8577	239 6	.0412456		Root MSE =	= 2.2623
growth	Coef.	Std. Err		P> t		Interval]
yhatT	.6927893	.1043154	6.64	0.000	.48729	.8982887
_cons	.9257153	.3465985	2.67	0.008	.2429227	1.608508

Extending this basic logic will hold for all xtreg estimators. Basically, think about them as projecting any given model result to the centered data, to group means, and to all data.

Random Coefficients

We saw fixed and random effects. The basic idea generalizes to regression coefficients on variables that are not unit-specific factors/indicators.

• Random Coefficients Specifications (Swamy 1970)

$$y_{it} = \alpha + (\overline{\beta} + \mu_i) X_{it} + \epsilon_{it}$$
 (11)

$$\mathbb{E}[\alpha_i] = 0; \mathbb{E}[\alpha_i X_{it}] = 0$$
(12)

$$\mathbb{E}[\alpha_i \alpha_j] = \begin{cases} \Delta & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$
(13)

Hsiao and Pesaran (2004, IZA DP 136) show that the GLS estimator is a matrix weighted average of the OLS estimator applied to each unit separately with weights inversely proportional to the covariance matrix for the unit.

xtrc: Implementing Random Coefficients

xtrc estimates the Swamy random coefficients model and provides us with a test statistic of parameter constancy. If the statistic is significantly different from zero, parameter constancy is rejected. Option betas gives us the unit-specifics. We have vce options here also.

Note, as with many xt commands, the jackknife is unit-based.

xtmixed

Stata has a mixed effects module that we can use for some things we have already seen and for extensions. I should say in passing that this also works for dimensions with nesting properties, though we are looking at two-dimensional data structures.

. sum

Variable	Obs	Mean	Std. Dev.	Min	Max
year	240	1977	4.329523	1970	1984
country	240	8.5	4.619406	1	16
growth	240	3.013292	2.457895	-3.6	9.8
lagg1	240	3.119855	1.652682	-2.40641	6.683519
opengdp	240	174.6452	146.2456	-32.1	736.02
openex	240	489.7662	420.4374	30.94	2879.2
openimp	240	482.8254	267.6722	64.96	1415.2
leftc	240	34.79583	39.56008	0	100
central	240	2.02421	.9593759	.4054115	3.618419
inter	240	91.33376	117.5622	0	361.8419

2022 Essex SS²DA: Dynamics and Heterogeneity

. xtreg growth lagg1 opengdp openimp openex leftc, re

Random-effects	GLS regress:	ion		Number	of obs =	240
Group variable	e (i): country	Į		Number	of groups =	16
R-sq: within	= 0.2960			Obs per	group: min =	15
between	n = 0.2038				avg =	15.0
overall	= 0.2811				max =	15
Random effects	s u_i ~ Gauss	ian		Wald ch	= = i2(5)	92.41
<pre>corr(u_i, X)</pre>	= 0 (as:	sumed)		Prob >	chi2 =	0.0000
	Coef.				[95% Conf.	Interval]
lagg1	.2194248	.0875581	2.51	0.012	.0478142	.3910355
opengdp	.0077965	.0009824	7.94	0.000	.005871	.0097219
openimp	0053695	.0009868	-5.44	0.000	0073035	0034355
openex	.0019647	.0006047	3.25	0.001	.0007796	.0031498
leftc	.0030365	.0036142	0.84	0.401	0040472	.0101202
_cons	2.491734	.4633904	5.38	0.000	1.583505	3.399962
+						
•	.21759529					
•	2.0364407					
rho	.01128821	(fraction	of variar	ice due t	o u_i)	

An MLE

•••	h lagg1 openg		openex le			
Random-effects	ML regression	n		Number	of obs =	240
Group variable	(i): country	7		Number	of groups =	16
Random effects	u_i ~ Gaussi	an		Obs per	group: min =	15
				LR chi2	(5) =	81.33
Log likelihood	= -514.471	.4		Prob >	chi2 =	0.0000
growth	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
+ lagg1	. 1873509	.0881362	2.13	0.034	.014607	. 3600947
	.0077706	.0009913		0.000	.0058276	.0097136
openimp	0055243	.0010506	-5.26	0.000	0075835	0034651
openex	.0020447	.0005936	3.44	0.001	.0008812	.0032082
	.0044378	.0039745	1.12	0.264	0033521	.0122277
_cons	2.583146	.5204807	4.96	0.000	1.563022	3.603269
+ /sigma_u	.5100119	. 1962033			. 2399497	1.084028
/sigma_e					1.839233	2.214995
rho		.0445522			.0110832	.2056057
Likelihood-rat	io tost of si		ibar2(01)			$r_{2} = 0.020$

Likelihood-ratio test of sigma_u=0: chibar2(01)= 3.56 Prob>=chibar2 = 0.030

2022 Essex SS²DA: Dynamics and Heterogeneity

. xtmixed growt	h lagg1 openg	gdp openimp	openex 1	eftc	R.country, ml	е
Mixed-effects M	IL regression			Number	of obs =	240
Group variable:	_all			Number	of groups =	1
-				Wald ch	.i2(5) =	
Log likelihood	= -514.4714			Prob >		0.0000
0						
growth	Coef.	Std. Err.	z	P> z	[95% Conf.	Intervall
+-						
lagg1	.1873501	.0859494	2.18	0.029	.0188925	.3558078
opengdp	.0077706	.0009911	7.84	0.000	.0058281	.009713
		.0010452				
		.0005915	3.46	0.001	.0008854	.0032039
-		.0038479			003104	
					1.569145	
Bandom-effect	s Parameters	Fatima	0+0 S+d	Frr	[95% Conf.	Intervall
_all: Identity						
· ·	ad (P country)		01 10	62046	0200545	1 00/027
	•				. 2399545	
					1.83923	
	··					
LR test vs. lin	lear regression	on: chibar2((01) =	3.56 P	rob >= chibar	2 = 0.0296

xtmixed growth lagg1 opengdp openimp openex leftc || R.country, mle

2022 Essex SS²DA: Dynamics and Heterogeneity

General Stata things, , vce()

For virtually all Stata commands, we can acquire multiple variance/covariance matrices of the parameters.

- , robust sometimes
- , cluster() sometimes
- , vce(boot)
- , vce(jack)

xtmixed

Will allow us to do tons of things. In particular, we can play with the residual correlation matrix using the option residuals. One can recreate virtually everything that we have seen so far this way. The remaining task for you in the lab is to figure out what all you can make it do.

• exchangeable

- ar
- ma
- unstructured
- banded

- toeplitz
- exponential

Mixed Effects Models in Stata with xtmixed

Mixed effects models will allow us to estimate many interesting models for xt data.

- Simple random effects
- Crossed random effects
- Random Coefficients
- Determined random coefficients

Examples

For the simple random effects estimator, there are two ways to do it via ML.

xtreg depvar indvars, mle

xtmixed depvar indvars || _all: R.UnitID, mle

. xtreg growth	lagg1 opengo	lp openimp o	penex lef	tc, mle		
				LR chi2	(5) =	81.33
Log likelihood	= -514.471	14		Prob >	chi2 =	0.0000
growth	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
lagg1	.1873509	.0881362	2.13	0.034	.014607	.3600947
opengdp	.0077706	.0009913	7.84	0.000	.0058276	.0097136
openimp	0055243	.0010506	-5.26	0.000	0075835	0034651
openex	.0020447	.0005936	3.44	0.001	.0008812	.0032082
leftc	.0044378	.0039745	1.12	0.264	0033521	.0122277
_cons	2.583146	.5204807	4.96	0.000	1.563022	3.603269
+ /sigma_u	.5100119	. 1962033			.2399497	1.084028
/sigma_e	2.018389	.0957214			1.839233	
-	.0600166	.0445522			.0110832	.2056057
Likelihood-ratio	o test of si	igma_u=0: ch	ibar2(01)	= 3.5	6 Prob>=chiba	r2 = 0.030
. xtmixed growth	n lagg1 oper	ngdp openimp	openex 1			•
					i2(5) =	0
Log likelihood =	= -514.4714	ł		Prob >	chi2 =	0.0000
growth	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]

lagg1	. 1873501	.0859494	2.18	0.029	.0188925	.3558078
opengdp	.0077706	.0009911	7.84	0.000	.0058281	.009713
openimp	0055243	.0010452	-5.29	0.000	0075729	0034757
openex	.0020447	.0005915	3.46	0.001	.0008854	.0032039
leftc	.0044378	.0038479	1.15	0.249	003104	.0119796
_cons	2.583148	.5173579	4.99	0.000	1.569145	3.597151
Random-effec	ts Parameters	 Estim	ate Sto	 1. Err.	[95% Conf.	Interval]
Random-effec	cts Parameters				[95% Conf.	_
Random-effec						_
		+ 				_
	 7	+ 				
	 7) .5100	191 .19			
	/ sd(R.country) .5100	191 .19	962046	.2399545	1.084037

Crossed Random Effects

Mixed-effects ML regression					of obs =	= 240		
Group variable: _all					of groups =	: 1		
				Obs per	group: min =	= 240		
				- · · · I ·	avg =			
					max =			
				Wald ch	i2(5) =	- 718		
Log likelihood	503 45469	2				0.2076		
rog ilvelinood				FIOD >		0.2070		
growth	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]		
lagg1	.0059048	.1296512	0.05	0.964	2482069	.2600164		
opengdp	.0001904	.0016087	0.12	0.906	0029626	.0033433		
openimp	0030722	.0015617	-1.97	0.049	006133	0000114		
openex	.002307	.0010185	2.27	0.024	.0003108	.0043032		
leftc	.0048234	.0036133	1.33	0.182	0022585	.0119053		
_cons	3.147245	.7630121	4.12	0.000	1.651768	4.642721		
Random-effec	ts Parameters	Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]						

		L					
_all: Identity		.6667379	. 190038	.381363	34	1.165658	
_all: Identity		 1.554459	.403356	.934773	38	2.58495	
		1.752177	.088538	39 1.58696	61	1.934595	
	near regression						
Note: LR test is conservative and provided only for reference							
. estimates store MLEtwowayRE							
. lrtest MLEtwowayRE MLEunitRE							
Likelihood-ratio test (Assumption: MLEunitRE nested in MLEtwowayRE)				LR chibar2(01) Prob > chibar2			
. qui xtmixed growth lagg1 opengdp openimp openex leftc _all: R.year, mle							
. lrtest MLEtwowayRE .							
Likelihood-ratio test (Assumption: . nested in MLEtwowayRE)				LR chibar2(01) Prob > chibar2			

. xtmixed growth lagg1 opengdp openimp openex leftc || country: leftc, covariance(unstructured)

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0:	log	restricted-likelihood = -540.17955
Iteration 1:	log	restricted-likelihood = -540.15493
Iteration 2:	log	<pre>restricted-likelihood = -540.15472</pre>
Iteration 3:	log	restricted-likelihood = -540.15472

Computing standard errors:

Mixed-effects REML regression	Number of obs = 240
Group variable: country	Number of groups = 16
	Obs per group: min = 15
	avg = 15.0
	max = 15
	Wald chi2(5) = 95.70
Log restricted-likelihood = -540.15472	Prob > chi2 = 0.0000
growth Coef. Std. Err.	z P> z [95% Conf. Interval]

+						
lagg1	. 170562	.0869219	1.96	0.050	.0001982	.3409259
opengdp	.0078608	.0010053	7.82	0.000	.0058905	.0098312
openimp	0055371	.0010763	-5.14	0.000	0076465	0034277
openex	.0020745	.0005967	3.48	0.001	.0009051	.0032439
leftc	.0039332	.0046265	0.85	0.395	0051346	.013001
_cons	2.570449	. 5444497	4.72	0.000	1.503347	3.637551
Random-effect	ts Parameters	Estima	te Stá	I. Err.	[95% Conf.	Intervall
		-+				
country: Unstructured						
country. onboit	sd(leftc)	.00894	51 00)78813	.0015908	.0502989
	sd(_cons)			58791	.2969756	1.452085
cori	r(leftc,_cons)	61687	31 .53	300418	9835763	.7429732
		-+				
	sd(Residual)	2.0222	26 .0)98202	1.83863	2.224156
LR test vs. lin	near regressio	on: ch	i2(3) =	5.40	Prob > chi	2 = 0.1445

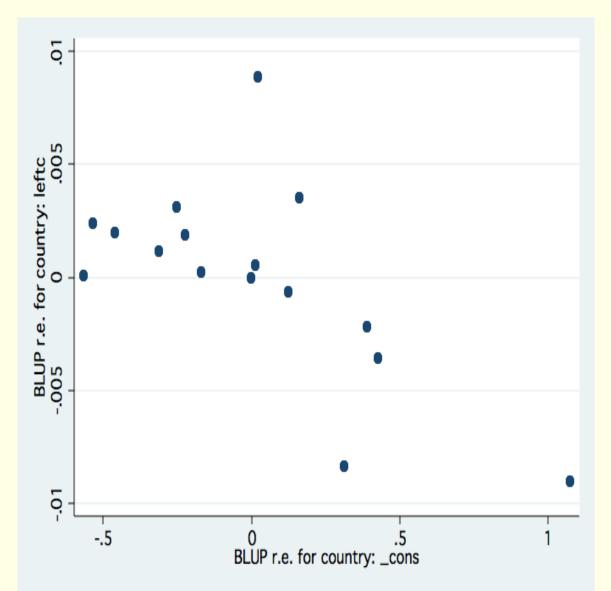
Note: LR test is conservative and provided only for reference

. * The coefficient is insignificant as is the randomness

. estat recovariance

Random-effects covariance matrix for level country

| leftc _cons -----leftc | .00008 _cons | -.0036236 .4312338


. capture drop u1 u2

. predict u*, reffects

. by country, sort: sum u*

-> country = AUL					
Variable	Obs	Mean	Std. Dev.	Min	Max
+					
u1		0006591		0006591	
u2	15	.1237475	0	.1237475	.1237475
\rightarrow country = AUS					
u1	15	.0005591	0	.0005591	.0005591
u2	15	.0125652	0	.0125652	.0125652
-> country = BEL					
u1	15	0000316	0	0000316	0000316
u2	15	0002924	0	0002924	0002924
\rightarrow country = CAN					
u1	15	0035756	0	0035756	0035756
u2	15	.4255248	0	.4255248	.4255248
-> country = DEN					
u1	15	.0019625	0	.0019625	.0019625
u2	15	462575	0	462575	462575
-> country = FIN					
u1	15	.003543	0	.003543	.003543
u2	15	.1606634	0	.1606634	.1606634
\rightarrow country = FRA					
u1	15	0083416	0	0083416	0083416
u2	15	.3128709	0	.3128709	.3128709
-> country = GER					

15	.0011514	0	.0011514	.0011514
15	3119804	0	3119804	3119804
15	0021854	0	0021854	0021854
15	.3908045	0	.3908045	.3908045
15	.0002358	0	.0002358	.0002358
15	1705837	0	1705837	1705837
15	0090248	0	0090248	0090248
15	1.074025	0	1.074025	1.074025
15	.0031352	0	.0031352	.0031352
15	2520462	0	2520462	2520462
15	.0088704	0	.0088704	.0088704
15	.0223926	0	.0223926	.0223926
15	.002398	0	.002398	.002398
15	5351107	0	5351107	5351107
15	.000085	0	.000085	.000085
15	5665398	0	5665398	5665398
15	2234658	0	2234658	2234658
	15 15 15 15 15 15 15 15 15 15 15 15 15 1	15 .0002358 15 1705837 15 0090248 15 1.074025 15 .0031352 15 2520462 15 .0088704 15 .0223926 15 .002398	15 3119804 0 15 0021854 0 15 $.3908045$ 0 15 $.0002358$ 0 15 1705837 0 15 0090248 0 15 0090248 0 15 1.074025 0 15 $.0031352$ 0 15 $.0031352$ 0 15 $.0088704$ 0 15 $.002398$ 0 15 $.002398$ 0 15 $.000085$ 0 15 $.000085$ 0 15 $.0018777$ 0	15 3119804 0 3119804 15 0021854 0 0021854 15 $.3908045$ 0 $.3908045$ 15 $.0002358$ 0 $.0002358$ 15 1705837 0 1705837 15 0090248 0 0090248 15 1.074025 0 1.074025 15 $.0031352$ 0 $.0031352$ 15 2520462 0 2520462 15 $.002398$ 0 $.002398$ 15 $.002398$ 0 $.002398$ 15 $.00085$ 0 $.00085$ 15 $.00085$ 0 $.00085$ 15 $.0018777$ 0 $.0018777$

2022 Essex SS^2DA : Dynamics and Heterogeneity

Wilson and Butler

- Survey of papers using TSCS data and methods(?)
- Vast majority do nothing about space or time.
- Does it matter?
 - Table 3 Table 4
- What do we do? Raise the bar for positive findings and look at multiple models trying to tease out the role of particular assumptions as necessary and/or sufficient for results.

More on xtpcse

Holding on to data

• restore

2022 Essex SS^2DA : Dynamics and Heterogeneity

Testing the Null Hypothesis of No Random Effects . xttest0

Breusch and Pagan Lagrangian multiplier test for random effects:

growth[country,t] = Xb + u[country] + e[country,t]

Estimated results:

		Var	<pre>sd = sqrt(Var)</pre>
	growth	6.041246	2.457895
	e	4.147091	2.036441
	u	.0473477	.2175953
Test:	Var(u) = 0		
		chi2(1) =	4.39

2022 Essex SS²DA: Dynamics and Heterogeneity

Prob > chi2 = 0.0361

xttest

. xttest1

Tests for the error component model:

growth[country,t] = Xb + u[country] + v[country,t] v[country,t] = rho v[country,(t-1)] + e[country,t]

Estimated results:

	1	/ar	sd = sqrt(V	ar)			
growth	6.04	L246	2.457895				
e	4.037	7869	2.0094449				
u	. 13	3335	.36517121				
Tests:							
Random Effects, Two Sided:							
LM(Var(u)=0)	=		Pr>chi2(1)	=	0.3174		
ALM(Var(u)=0)	=	0.54	Pr>chi2(1)	=	0.4610		
Random Effects, One Sided:							
LM(Var(u)=0)	=	1.00	Pr>N(0,1)	=	0.1587		
ALM(Var(u)=0)	=	0.74	Pr>N(0,1)	=	0.2305		
Serial Correlation:							
LM(rho=0)	=	0.74	Pr>chi2(1)	=	0.3906		

2022 Essex SS^2DA : Dynamics and Heterogeneity

ALM(rho=0) = 0.28 Pr>chi2(1) = 0.5961 Joint Test: LM(Var(u)=0,rho=0) = 1.28 Pr>chi2(2) = 0.5271

* We cannot reject the null hypothesis of no variation in the random effects. Also no evidence of serial correlation.

Remember, with the lagged endogenous variable on the right hand side, the random effects are included if they are there.

xttest1

- 1. LM test for random effects, assuming no serial correlation
- 2. Adjusted LM test for random effects, which works even under serial correlation
- 3. One-sided version of the LM test for random effects
- 4. One-sided version of the adjusted LM test for random effects
- 5. LM joint test for random effects and serial correlation
- 6. LM test for first-order serial correlation, assuming no random effects
- 7. Adjusted test for first-order serial correlation, which works even under random effects

xtgls

- corr: t structure ([ar] or [ps]ar) is ρ common or not.
- panels: *i* structure (iid, [h]eteroscedastic, [c]orrelated (and [h]))
- rhotype: regress (regression using lags), dw Durbin-Watson, freg (forward regression uses leads), nagar, theil, tscorr
- igls (iterate or two-step)
- force for unbalanced.

xttest2 and xttest3

After fe or xtgls, we have two tests pre-programmed.

- 1. We have a test of independence (within) in xttest2
- 2. We have a test of homoscedasticity (within) in xttest3

xtserial

Wooldridge presents a test for serial correlation.

xtcsd

How do we test for cross-sectional dependence?

- Generally used for small T and large N settings.
- Three methods: xtcsd, pesaran friedman frees
- This is the panel correction in PCSE

xtscc

Driscoll and Kraay (1998) describe a robust covariance matrix estimator for pooled and fixed effects regression models that contain a large time dimension. The approach is robust to heteroscedasticity, autocorrelation, and spatial correlation.

We're Here for Fancy Estimators, Why is Everything OLS?

There are limitation imposed by what people have programmed in terms of regression diagnostics. However, if we can fit the same model by OLS, we can use standard regression diagnostics post-estimation to avoid calculating the diagnostics by hand. Many diagnostics are pre-programmed.

OLS Diagnostics

- We could also use other standard diagnostics in the OLS framework. If you are going to intensively use Stata, books like Statistics with Stata are quite useful.
 - estat ovtest, [rhs] will give us Ramsey's RESET test. The option gives us RHS variables, otherwise we just use fitted values. The default is a Wald test applied to the regression

$$y_{it} = X_{it}\beta + \hat{y}^2\gamma_1 + \hat{y}^3\gamma_2 + \hat{y}^4\gamma_3 + \epsilon_{it}$$

and with option rhs the powers are applied to the right-hand side variables. predict ..., dfits and dfbeta: We also have the various dffits and dfbeta statistics for use in diagnosing leverage. The dfit is the studentized residual multiplied by the square root of h_i over $(1 - h_i)$; basically a scaled measure of the difference between in-sample and out-ofsample predictions. The dfit is obtained as a post-regression prediction using predict. Define dfbeta as:

$$DFBETA_j = \frac{r_j v_j}{\sqrt{v^2 (1 - h_j)}}$$

where *h* is the *j*th item in **P**, r_j is the studentized residual, v_j are the residuals from a regression not containing the regressor in question, and v^2 is their sum of squares. Suggested cutoffs are $2\sqrt{\frac{k}{N}}$ for dfit and $\frac{2}{\sqrt{N}}$ for dfbeta. There is also the Cook's distance (cooksd) and Welsch distance (welsch).

estat hettest [varlist] [, rhs [normal | iid | fstat] mtest[(spec)]] gives
 us a variety of tests for heteroscedasticity. The rhs option gives structure
 from covariates. mtest is important because we are doing multiple testing

(often).

estat vif gives us some collinearity diagnostics. The statistic is essentially $\frac{1}{1-R_{(-k)}^2}$.

estat imtest [, preserve white] where the default is Cameron-Trivedi, we can request White's version, and preserve maintains the original data (saves time often). As a general misspecification test, the Information Matrix test is shown by Hall (1987) to decompose into heteroscedasticity, skewness, and kurtosis of residuals and has some suboptimal properties.

Plots

- avplot: added-variable plot
- avplots: all added-variable plots in one image
- cprplot: component-plus-residual plot
- lvr2plot: leverage-versus-squared-residual plot
- rvfplot: residual-versus-fitted plot
- rvpplot: residual-versus-predictor plot

Panel Unit Root Testing in Stata

As of Stata 11, a battery of panel unit-root tests have emerged. There are many and they operate under differing sets of assumptions.

• Levin-Lin-Chu (xtunitroot llc): trend nocons (unit specific) demean (within transform) lags. Under (crucial) cross-sectional independence, the test is an advancement on the generic Dickey-Fuller theory that allows the lag lengths to vary by cross-sections. The test relies on specifying a kernel (beyond our purposes) and a lag length (upper bound). The test statistic has a standard normal basis with asymptotics in $\frac{\sqrt{N_T}}{T}$ (T grows faster than N). The test is of either all series containing unit roots (H_0) or all stationary; this is a limitation. It is recommended for moderate to large T and N. 1. Perform separate ADF regressions:

$$\Delta y_{it} = \rho_i \Delta y_{i,t-1} + \sum_{L=1}^{p_i} \theta_{iL} \Delta y_{i,t-L} + \alpha_{mi} d_{mt} + \epsilon_{it}$$

with d_{mt} as the vector of deterministic variables (none, drift, drift and trend). Select a max L and use t on $\hat{\theta}_{iL}$ to attempt to simplify. Then use $\Delta y_{it} = \Delta y_{i,t-L}$ and d_{mt} for residuals

- Harris-Tzavalis (xtunitroot ht): trend nocons (unit specific) demean (within transform) altt (small sample adjust) Similar to the previous, they show that $T \to \infty$ faster than N (rather than T fixed) leads to size distortions.
- Breitung (xtunitroot breitung): trend nocons (unit specific) demean (within transform) robust (CSD) lags.
 Similar to LLC with a common statistic across all *i*.

- Im, Pesaran, Shin (xtunitroot ips): trend demean (within transform) lags. They free ρ to be ρ_i and average individual unit root statistics. The null is that all contain unit roots while the alternative specifies at least some to be stationary. The test relies on sequential asymptotics (first T, then N). Better in small samples than LLC, but note the differences in the alternatives.
- Fisher type tests (xtunitroot fisher): dfuller pperron demean lags.
- Hadri (LM) (xtunitroot hadri): trend demean robust

All but the last are null hypothesis unit-root tests. Most assume balance but the fisher and IPS versions can work for unbalanced panels.

ADL/Canonical models

We can consider some very basic time series models.

- Koyck/Geometric decay: short run and long-run effects are parametrically identified (given *M*).
- Almon (more arbitrary decay):

$$y_{it} = \sum_{t_A=0}^{T_F} \rho_{t_A} x_{t-t_A} + \epsilon_t$$

with coefficients that are ordinates of some general polynomial of degree $T_F >> q$. The $\rho_{t_A} = \sum_{k=0}^{T_F} \gamma_k t^k$.

• Prais-Winston, etc. are basically FGLS implementations of AR(1).

Prais-Winsten/Cochrane-Orcutt

$$y_{it} = X_{it}\beta + \epsilon_{it}$$

where

$$\epsilon_{it} = \rho \epsilon_{i,t-1} + \nu_{it}$$

and $\nu_{it} \sim N(0, \sigma_{\nu}^2)$ with stationarity forcing $|\rho| < 1$. We will use iterated FGLS. First, estimate the regression recalling our unbiasedness condition. Then regress $\hat{\epsilon}_{it}$ on $\hat{\epsilon}_{i,t-1}$. Rinse and repeat until ρ doesn't change. The transformation applied to the first observation is distinct, you can look this up.... In general, the transformed regression is:

$$y_{it} - \rho y_{i,t-1} = \alpha (1 - \rho) + \beta (X_{it} - \rho X_{i,t-1}) + \nu_{it}$$

with ν white noise.

2022 Essex SS²DA: Dynamics and Heterogeneity

Beck

• Static model: Instantaneous impact.

$$y_{i,t} = X_{i,t}\beta + \nu_{i,t}$$

• Finite distributed lag: lags of x finite horizon impact (defined by lags).

$$y_{i,t} = X_{i,t}\beta + \sum_{k=1}^{K} X_{i,t-k}\beta_k + \nu_{i,t}$$

• AR(1): Errors decay geometrically, X instantaneous. (Suppose unmeasured x and think this through).

$$y_{i,t} = X_{i,t}\beta + \nu_{i,t} + \theta \epsilon_{i,t-1}$$

2022 Essex SS²DA: Dynamics and Heterogeneity

• Lagged dependent variable: lags of y [common geometric decay]

$$y_{i,t} = X_{i,t}\beta + \phi y_{i,t-1} + \nu_{i,t}$$

• ADL: current and lagged x and lagged y.

$$y_{i,t} = X_{i,t}\beta + X_{i,t-1}\gamma + \phi y_{i,t-1} + \epsilon_{i,t}$$

 Panel versions of transfer function models from Box and Jenkins time series. (each x has an impact and decay function)

Brief Comment on Hurwicz/Nickell Bias

- Bias is of stochastic order $\frac{1}{T}$.
- Less bad as more T

Interpretation of dynamic models

- Do it.
- Whitten and Williams dynsim uses Clarify³ to do this.
- Their paper is "But Wait, There's More! Maximizing Substantive Inferences from TSCS Models". Easy to find on the web and on the website.

³If you do not know what Clarify is, please ask: estimate, set, simulate.

Details

$$y_{it} = \alpha + \gamma y_{i,t-1} + X_{it}\beta + \epsilon_{it}$$

$$y_{it} = \alpha + \gamma [\alpha + \gamma y_{i,t-2} + X_{i,t-1}\beta + \epsilon_{i,t-1}] + X_{it}\beta + \epsilon_{it}$$

$$y_{it} = \alpha + \gamma [\alpha + \gamma (\alpha + \gamma y_{i,t-3} + X_{i,t-2}\beta + \epsilon_{it}) + X_{i,t-1}\beta + \epsilon_{i,t-1}] + X_{it}\beta + (16)$$

We can continue substituting through to conclude that we have a geometrically decaying impact so that the long-run effect of a one-unit change in X is

$$rac{eta}{1-\gamma}$$

But γ has uncertainty, it is an estimate. To show the realistic long-run impact, we need to incorporate that uncertainty.

2022 Essex SS²DA: Dynamics and Heterogeneity