2022 Essex Summer School 3K: Dynamics and Heterogeneity

Robert W. Walker, Ph. D. Associate Professor of Quantitative Methods Atkinson Graduate School of Management Willamette University Salem, Oregon USA rwalker@willamette.edu

August 18, 2022

2022 Essex SS²DA: Dynamics and Heterogeneity

Outline for Day 9

- A Brief Bit on IV
- DPD

Instrumental Variables

Three key conditions for instruments in general:

Orthogonality with y

Relevance to endogenous x

Variance components of instruments are equivalent

Literature on weak instruments is relevant.

There are two classes of instrumental variables estimators in Stata.

- Hausman-Taylor: Subset of RHS variables are correlated with random effects. The idea is that we can use time-varying covariates to achieve identification for time-invariant things correlated with random effects. Not all that useful in applied setting because convincing instruments are hard to find.
- General IV: Endogenous covariates xtivreg implements this for the usual models (FE, RE, BE, FD)

xtfevd

Plümper and Troeger have designed a procedure to solve one of the principle problems that arises in fixed effects regressions: it is either impossible or suboptimal to estimate the effects of time-invariant or nearly time-invariant regressors. Their approach plays off of the generic consistency of the fixed effects estimator. In general, they begin by estimating an LSDV model.

$$y_{it} = \alpha_i + X_{it}\beta + \epsilon_{it}$$

They then proceed to model the unit effects as a function of (largely) timeinvariant regressors that they denote as Z

$$\alpha_i = Z_i \gamma + \psi_i$$

In a third stage, they then construct the regression with an offset. In effect, they

take the offset and add it to the regression such as,

$$y_{it} = \psi_i + X_{it}\beta + Z_i\gamma + \nu_{it}$$

and adjust the variance/covariance matrix of the errors accordingly.

Dynamic Panel Data

We have encountered Hurwicz/Nickell bias. Dynamic panel data estimators are an effort to avoid this problem.

GMM

Generalized method of moments estimators are a class of estimators created by analogs of the population moment conditions for sample moments. For example, linear regression is a GMM estimator and the moment restriction that must hold for OLS is that $\mathbb{E}[\mathbf{X}'\epsilon] = 0$. With endogenous $\mathbf{x} \in \mathbf{X}$, we instrument using \mathbf{z} . If there is one \mathbf{z} for each endogenous x, we have a standard IV. Without exact identification, we need iteration and GMM estimators will typically involve testing these overidentifying restrictions using a Sargan test, as we will see.

GMM for Panels

The trick here is that the panel structure gives us numerous instruments for "free". Comes in two forms. Single-equation and systems estimators. With systems estimators, assumptions give us leverage on moment conditions in both level and difference forms, we use these jointly to estimate the parameters of interest.

Introducing DPD

• We are interested in estimating the parameters of models of the form

$$y_{it} = y_{i,t-1}\gamma + X_{it}\beta + \alpha_i + \epsilon_{it}$$

for $i = \{1, \ldots, N\}$ and $t = \{1, \ldots, T\}$ using datasets with large N and fixed T

- By construction, $y_{i,t-1}$ is correlated with the unobserved individual-level effect α_i .
- Removing α_i by the within transform produces an inconsistent estimator with T fixed.
- First difference both sides and look for instrumental-variables (IV) and generalized method-of-moments (GMM) estimators

Arrelano-Bond

• First differencing the model equation yields

$$\Delta y_{it} = \Delta y_{i,t-1}\gamma + \Delta x_{it}\beta + \Delta \epsilon_{it}$$

- The α_i are gone, but the $y_{i,t-1}$ in $\Delta y_{i,t-1}$ is a function of the $\epsilon_{i,t-1}$ which is also in $\Delta \epsilon_{it}$.
- $\Delta y_{i,t-1}$ is correlated with $\Delta \epsilon_{it}$ by construction
- Anderson and Hsiao (1981) give a 2SLS estimator based on (further) lags of Δy_{it} as instruments for Δy_{i,t-1}. E.g. if ε_{it} is IID over i and t, Δy_{i,t-2} is valid for Δy_{i,t-1}.

- Anderson and Hsiao (1981) also suggest a 2SLS estimator based on lagged levels of y_{it} as instruments for $\Delta y_{i,t-1}$. E.g. if ϵ_{it} is IID over i and t, $y_{i,t-2}$ can instrument for $\Delta y_{i,t-1}$.
- Holtz-Eakin, and co-authors (1988) and Arellano and Bond (1991) showed how to construct estimators based on moment equations constructed from further lagged levels of y_{it} and the first-differenced errors.
- We are creating moment conditions using lagged levels of the dependent variable with first differences, $\Delta \epsilon_{it}$. First-differences of strictly exogenous covariates also create moment conditions.
- Assume that ϵ_{it} are IID over *i* and *t* (no serial correlation)
- GMM is needed because there are more instruments than parameters.

Strict Exogeneity vs. Predetermined

- If regressors are strictly exogenous: $\mathbb{E}[x_{it}\epsilon_{is}] = 0 \ \forall s, t.$
- If predetermined, $\mathbb{E}[x_{it}\epsilon_{is}] \neq 0$ if s < t but $\mathbb{E}[x_{it}\epsilon_{is}] = 0 \ \forall s \geq t$
- Dynamic panel data models allow predetermined regressors. [backward feedback, no forward feedback]

A bit more on this and GMM

- The moment conditions formed by assuming that particular lagged levels of the dependent variable are orthogonal to the differenced disturbances are known as GMM-type moment conditions
- Sometimes they are called sequential moment conditions
- The moment conditions formed using the strictly exogenous covariates are just standard IV moment conditions, so they are called standard moment conditions
- The dynamic panel-data estimators in Stata report which transforms of which variables were used as instruments
- In GMM estimators, we weight the vector of sample-average moment conditions by the inverse of a positive definite matrix

- When that matrix is the covariance matrix of the moment conditions, we have an efficient GMM estimator
- In the case of nonidentically distributed disturbances, we can use a twostep GMM estimator that estimates the covariance matrix of the moment conditions using the first-step residuals
- Although the large-sample robust variance-covariance matrix of the two-step estimator does not depend on the fact that estimated residuals were used, simulation studies have found that that Windmejier's bias-corrected estimator performs much better
- Specifying vce(robust) produces an estimated VCE that is robust to heteroskedasticity
- There is a result in the large-sample theory for GMM which states that the

VCE of the two-step estimator does not depend on the fact that it uses the residuals from the first step. Windmeijer 2005 bias-corrects the VCE of the two-step GMM.

- No robust Sargan test but Arrelano-Bond test exists.
- When the variables are predetermined, it means that we cannot include the whole vector of differences of observed xit into the instrument matrix
- We just include the levels of x_{it} for those time periods that are assumed to be unrelated to $\Delta \epsilon_{it}$.
- The Arellano-Bond estimator formed moment conditions using lagged-levels of the dependent variable and the predetermined variables with first-differences of the disturbances

- Arellano and Bover(1995) and Blundell and Bond (1998) found that if the autoregressive process is too persistent, then the lagged-levels are weak instruments
- These authors proposed using additional moment conditions in which lagged differences of the dependent variable are orthogonal to levels of the disturbances
- To get these additional moment conditions, they assumed that panel-level effect is unrelated to the first observable first-difference of the dependent variable
- xtdpdsys is syntactically similar to xtabond

The Data for Implementation

Contains data from abdata.dta obs: 1,031

Layard & Nickell, Unemployment in Britain, Economica 53, 1986

variable name	storage type	display format	value label	variable label
ind	int	%8.0g		industry
year	int	%8.0g		
emp	float	%9.0g		employment
wage	float	%9.0g		real wage
cap	float	%9.0g		gross capital stock
indoutpt	float	%9.0g		industry output
n	float	%9.0g		log(employment)
W	float	%9.0g		log(real wage)
k	float	%9.0g		log(gross capital stock)
ys	float	%9.0g		log(industry output)
yr1980	float	%9.0g		
yr1981	float	%9.0g		
yr1982	float	%9.0g		
yr1983	float	%9.0g		
yr1984	float	%9.0g		
id	float	%9.0g		firm ID

Sorted by: id year

2022 Essex SS^2DA : Dynamics and Heterogeneity

Implementation

• xtregar: , re and fe options

Fit a first order autoregressive structure to TSCS data. Defaults to an iterative estimator but twostep is available. 1bi gives a test of the hypothesis that ρ is zero. (not a default)

• xtabond

estat abond gives a test for autocorrelation estat sargan gives the overidentifying restrictions test

 xtlsdvc y x, initial(ah or ab or bb) vcov(1000 bs iter) will handle unbalanced
 Bias-corrected least-squares dummy variable (LSDV) estimators for the standard autoregressive panel-data model using the bias approximations in Bruno (2005a) for unbalanced panels

- xtivreg
- xtdpd fits Arellano-Bond and Arellano-Bover/Blundell-Bond

estat abond gives a test for autocorrelation estat sargan gives the overidentifying restrictions test (Rejection implies failure of assumptions)

More on DPD

• David Roodman's excellent and well documented xtabond2 extends the Stata command and incorporates orthogonal deviations transformation that assist in gapped panels. I personally think it is the best software for this.

• Systems DPD is complicated but perhaps very useful.

• As an aside, I laughed pretty hard at a post on econ job rumours where someone claimed that no one actually understands these models! [Not true, I am positive that Hansen does.....]

	firm	year	sector	emp	wage	capital
Grand mean	73.20	1979.65	5.12	7.89	23.92	2.51
S.D.	41.23	2.22	2.68	15.93	5.65	6.25
TSS	1751193.23	5058.30	7387.36	261539.39	32861.76	40217.79
Between S.D.	40.56	0.60	2.68	16.17	5.18	6.10
BSS	1751193.23	368.30	7387.36	256508.78	28458.33	39065.07
Within S.D.	0.00	2.13	0.00	2.21	2.07	1.06
WSS	0.00	4690.00	0.00	5030.61	4403.43	1152.72
% Within	0.00	0.93	0.00	0.02	0.13	0.03

- > # To make it match the Stata data.
- > EmplUK\$n <- log(EmplUK\$emp)</pre>
- > EmplUK\$w <- log(EmplUK\$wage)</pre>
- > EmplUK\$k <- log(EmplUK\$capital)</pre>
- > EmplUK\$ys <- log(EmplUK\$output)</pre>

```
> # Can just use log syntax to solve it.
> # Arellano and Bond (1991), table 4(a1)
> Table4.a1 <- pgmm(log(emp) ~ lag(log(emp), 1:2) + lag(log(wage),
> summary(Table4.a1)
```

Twoways effects One step model

```
Unbalanced Panel: n=140, T=7-9, N=1031
```

Number of Observations Used: 611

2022 Essex SS²DA: Dynamics and Heterogeneity

Residuals					
Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
-0.6007000	-0.0299500	0.0000000	-0.0001193	0.0311500	0.5693000

Coefficients

	Estimate	Std. Error	z-value	Pr(> z)	
lag(log(emp), 1:2)1	0.686226	0.144594	4.7459	2.076e-06	***
lag(log(emp), 1:2)2	-0.085358	0.056016	-1.5238	0.1275510	
<pre>lag(log(wage), 0:1)0</pre>	-0.607821	0.178205	-3.4108	0.0006478	***
<pre>lag(log(wage), 0:1)1</pre>	0.392623	0.167993	2.3371	0.0194319	*
<pre>lag(log(capital), 0:2)0</pre>	0.356846	0.059020	6.0462	1.483e-09	***
<pre>lag(log(capital), 0:2)1</pre>	-0.058001	0.073180	-0.7926	0.4280206	
<pre>lag(log(capital), 0:2)2</pre>	-0.019948	0.032713	-0.6098	0.5420065	
<pre>lag(log(output), 0:2)0</pre>	0.608506	0.172531	3.5269	0.0004204	***
<pre>lag(log(output), 0:2)1</pre>	-0.711164	0.231716	-3.0691	0.0021469	**
<pre>lag(log(output), 0:2)2</pre>	0.105798	0.141202	0.7493	0.4536974	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Sargan Test: chisq(25) = 48.74983 (p.value=0.0030295) Autocorrelation test (1): normal = -3.599593 (p.value=0.00031872) Autocorrelation test (2): normal = -0.5160282 (p.value=0.60583) Wald test for coefficients: chisq(10) = 408.2859 (p.value=< 2.22e-16 Wald test for time dummies: chisq(6) = 11.57904 (p.value=0.072046)

```
Twoways effects Two steps model
```

Unbalanced Panel: n=140, T=7-9, N=1031

```
Number of Observations Used: 611
```

Residuals

Min.1st Qu.MedianMean3rd Qu.Max.-0.6191000-0.02557000.0000000-0.00013390.03320000.6410000

Coefficients

Estimate Std. Error z-value Pr(>|z|)lag(log(emp), 1:2)1 0.474151 0.085303 5.5584 2.722e-08 *** -0.052967 0.027284 lag(log(emp), 1:2)2 -1.9413 0.0522200 . lag(log(wage), 0:1)0 0.049345 -10.4003 < 2.2e-16 *** -0.513205 lag(log(wage), 0:1)1 0.224640 0.080063 2.8058 0.0050192 ** log(capital) 0.039463 7.4177 1.191e-13 *** 0.292723 lag(log(output), 0:1)0 0.609775 0.108524 5.6188 1.923e-08 *** lag(log(output), 0:1)1 -0.446373 0.124815 -3.5763 0.0003485 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Sargan Test: chisq(25) = 30.11247 (p.value=0.22011) Autocorrelation test (1): normal = -2.427829 (p.value=0.01519) Autocorrelation test (2): normal = -0.3325401 (p.value=0.73948) Wald test for coefficients: chisq(7) = 371.9877 (p.value=< 2.22e-16) Wald test for time dummies: chisq(6) = 26.9045 (p.value=0.0001509)

2022 Essex SS²DA: Dynamics and Heterogeneity

```
> # Or with Robust [Notice it is default]
> summary(Table4.b)
```

Twoways effects Two steps model

```
Call:
pgmm(formula = log(emp) ~ lag(log(emp), 1:2) + lag(log(wage),
            0:1) + log(capital) + lag(log(output), 0:1) | lag(log(emp),
            2:99), data = EmplUK, effect = "twoways", model = "twosteps")
Unbalanced Panel: n=140, T=7-9, N=1031
```

Number of Observations Used: 611

Residuals

```
Min. 1st Qu. Median Mean 3rd Qu. Max.
```

2022 Essex SS²DA: Dynamics and Heterogeneity

Coefficients

	Estimate	Std. Error	z-value	Pr(> z)	
lag(log(emp), 1:2)1	0.474151	0.185398	2.5575	0.0105437	*
lag(log(emp), 1:2)2	-0.052967	0.051749	-1.0235	0.3060506	
<pre>lag(log(wage), 0:1)0</pre>	-0.513205	0.145565	-3.5256	0.0004225	***
lag(log(wage), 0:1)1	0.224640	0.141950	1.5825	0.1135279	
log(capital)	0.292723	0.062627	4.6741	2.953e-06	***
<pre>lag(log(output), 0:1)0</pre>	0.609775	0.156263	3.9022	9.530e-05	***
<pre>lag(log(output), 0:1)1</pre>	-0.446373	0.217302	-2.0542	0.0399605	*
Signif. codes: 0 '***'	0.001 '**	, 0.01 (*,	0.05 '.;	0.1 ' ' 1	_

Sargan Test: chisq(25) = 30.11247 (p.value=0.22011)
Autocorrelation test (1): normal = -1.53845 (p.value=0.12394)

Autocorrelation test (2): normal = -0.2796829 (p.value=0.77972) Wald test for coefficients: chisq(7) = 142.0353 (p.value=< 2.22e-16) Wald test for time dummies: chisq(6) = 16.97046 (p.value=0.0093924)

```
> ## Blundell and Bond (1998) table 4
> Table4.BB <- pgmm(log(emp) ~ lag(log(emp), 1)+ lag(log(wage), 0:1)
+ lag(log(capital), 0:1) | lag(log(emp), 2:99) +
+ lag(log(wage), 2:99) + lag(log(capital), 2:99),
+ data = EmplUK, effect = "twoways", model = "onestep",
+ transformation = "ld")
> summary(Table4.BB, robust = TRUE)
```

```
Twoways effects One step model
```

```
Call:
pgmm(formula = log(emp) ~ lag(log(emp), 1) + lag(log(wage), 0:1) +
```

```
lag(log(capital), 0:1) | lag(log(emp), 2:99) + lag(log(wage),
2:99) + lag(log(capital), 2:99), data = EmplUK, effect = "twoway
model = "onestep", transformation = "ld")
```

```
Unbalanced Panel: n=140, T=7-9, N=1031
```

```
Number of Observations Used: 1642
```

```
Residuals

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.7530000 -0.0369000 0.0000000 0.0002882 0.0466100 0.6002000

Coefficients

Estimate Std. Error z-value Pr(>|z|)

lag(log(emp), 1) 0.935605 0.026295 35.5810 < 2.2e-16 ***

lag(log(wage), 0:1)0 -0.630976 0.118054 -5.3448 9.050e-08 ***
```

2022 Essex SS²DA: Dynamics and Heterogeneity

lag(log(wage), 0:1)1 0.482620 0.136887 3.5257 0.0004224 *** lag(log(capital), 0:1)0 0.483930 0.053867 8.9838 < 2.2e-16 *** lag(log(capital), 0:1)1 -0.424393 0.058479 -7.2572 3.952e-13 *** ---</pre>

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Sargan Test: chisq(100) = 118.763 (p.value=0.097096) Autocorrelation test (1): normal = -4.808434 (p.value=1.5212e-06) Autocorrelation test (2): normal = -0.2800133 (p.value=0.77947) Wald test for coefficients: chisq(5) = 11174.82 (p.value=< 2.22e-16) Wald test for time dummies: chisq(7) = 14.71138 (p.value=0.039882)

References

The manual for R package plm was published in the Journal of Statistical Software. It is nice and extensive excepting the application of dpd models. Kit Baum has a very nice discussion of this in Stata in a set of course slides on the web at Boston College [search google for Baum Dynamic Panel Data Estimators].